Copositive programming motivated bounds on the stability and the chromatic numbers
نویسندگان
چکیده
The Lovász theta number of a graph G can be viewed as a semidefinite programming relaxation of the stability number of G. It has recently been shown that a copositive strengthening of this semidefinite program in fact equals the stability number of G. We introduce a related strengthening of the Lovász theta number toward the chromatic number of G, which is shown to be equal to the fractional chromatic number of G. Solving copositive programs is NP-hard. This motivates the study of tractable approximations of the copositive cone. We investigate the Parrilo hierarchy to approximate this cone and provide computational simplifications for the approximation of the chromatic number of vertex transitive graphs. We provide some computational results indicating that the Lovász theta number can be strengthened significantly toward the fractional chromatic number of G on some Hamming graphs.
منابع مشابه
Approximating the Chromatic Number of a Graph by Semidefinite Programming∗
We investigate hierarchies of semidefinite approximations for the chromatic number χ(G) of a graph G. We introduce an operator Ψ mapping any graph parameter β(G), nested between the stability number α(G) and χ G , to a new graph parameter Ψβ(G), nested between ω(G) and χ(G); Ψβ(G) is polynomial time computable if β(G) is. As an application, there is no polynomial time computable graph parameter...
متن کاملComputing Multiplicative Zagreb Indices with Respect to Chromatic and Clique Numbers
The chromatic number of a graph G, denoted by χ(G), is the minimum number of colors such that G can be colored with these colors in such a way that no two adjacent vertices have the same color. A clique in a graph is a set of mutually adjacent vertices. The maximum size of a clique in a graph G is called the clique number of G. The Turán graph Tn(k) is a complete k-partite graph whose partition...
متن کاملFinding the Number of Members with Certain Relationships in Social Networks and Big Size Organizations using Copositive Programming
In social networks and big size organizations, finding the number of members that all of them have a certain relationship w* is an important problem for managers, as well the number of members that none of them has not the relationship (w*). Considering the members as vertices and the relationship as edges, w* and w* denote the clique number and the number of edges in the independent graph, re...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملOn the accuracy of uniform polyhedral approximations of the copositive cone
We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called copositive programs, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in the limit....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 121 شماره
صفحات -
تاریخ انتشار 2010